Not quite right -- got stuck at the end and realized I had written the conjecture down incorrectly, but I wanted to post it anyways because I was pleased that I figured out what I had done wrong. Will take a second stab at it another day.
Let A, B, and C be sets. Then A \ ( B U C) = (A \ B) U (A \ C).
Proof. We show this with containment in both directions. Consider x in A \ (B U C), then x in A, but x not in B U C. This means x not in B and x not in C. Since x in A and x not in B, then x in (A \ B). Since x in A but x not in C, then x in (A \ C). Since x in (A\B) and x in (A\C), then x in (A\B) U (A \C). Thus, A \ (B U C) is a subset of (A\B) U (A\C).
To show the reverse, consider y in (A\B) U (A\C). The either y in A\B or y in A\C or both. If y in A\B then y in A and y not in B. If y in A\C, then y in A and y not in C. Thus, y in A and either y not in B or y not in C or both. ?